NMR Transversal Relaxivity of Aqueous Suspensions of Particles of Ln$^{3+}$-Based Zeolite Type Materials

G.A. Pereira,¹,³ M. Norek,² J.A. Peters,² D. Ananias,³ João Rocha³ and Carlos F. G. C. Geraldes¹

¹Department of Biochemistry and Center of Neurosciences and Cell Biology, Faculty of Science and Technology, University of Coimbra, P.O. Box 3126, 3001-401 Coimbra, Portugal.
²Biocatalysis and Organic Chemistry, Department of Biotechnology, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands.
³Department of Chemistry, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal

A series of zeolite-type silicates containing stoichiometric amounts of Ln$^{3+}$ ions in the framework (Ln-AV-9 materials), with composition (Na₄K₂(Ln₂Si₁₆O₄₈).₁₀H₂O (Ln = Nd, Sm, Eu, Tb, Gd, Dy) has recently been synthesized and characterized (Fig.1). They form paramagnetic microparticles, which as aqueous suspensions have negligible water 1H longitudinal relaxivities (r_1) for all Ln$^{3+}$ ions studied and quite large transverse relaxivities (r_2) [1]. In this work we further analysed the size distribution of the Ln-AV-9 particles and their r_2^* and r_2 relaxivities [2]. The r_2^* relaxivity effects are explained by the Static Dephasing Regime (SDR) theory. The r_2 relaxivities appear to be strongly dependent on the interval between two consecutive refocusing pulses ($τ_{CP}$) in the train of 180° pulses applied. For long $τ_{CP}$ values, the r_2 of the systems saturates at a value, which is always an order of magnitude smaller than r_2^*. These features are explained by a crude model, which takes into account the residual diffusion effect in the static dephasing regime. The large microparticles, although not efficient in T_1 relaxation, are quite effective in enhancing T_2 relaxation, particularly at high magnetic fields. The r_2^* values and the saturation values for r_2 were found to increase linearly with B_0 and $μ_0^2$ (Fig. 2). The largest transversal relaxation rate enhancements were observed for Dy-AV-9 with a saturation value of r_2 of 60 s$^{-1}$ mM$^{-1}$ and a r_2^* value of 566 s$^{-1}$ mM$^{-1}$ at 9.4 T and 298 K.

Fig.1

The authors thank F.C.T. (Portugal), FEDER, the EU (Marie Curie fellowship), COST Action D38 and EMIL.